翻訳と辞書
Words near each other
・ Leonardo Morosini
・ Leonardo Moura
・ Leonardo Muraro
・ Leonardo Murialdo
・ Leonardo Music Journal
・ Leonardo Márquez
・ Leonardo Nam
・ Leonardo Narváez
・ Leonardo Navarro
・ Leonardo Navigajoso
・ Leonardo Neher
・ Leonardo Nemer Caldeira Brant
・ Leonardo Nierman
・ Leonardo Nigro
・ Leonardo Novo
Leonardo number
・ Leonardo Occhipinti
・ Leonardo Oliviero
・ Leonardo Omar Onida
・ Leonardo Ortolani
・ Leonardo Osses
・ Leonardo Padrin
・ Leonardo Padura Fuentes
・ Leonardo Pais
・ Leonardo Paniagua
・ Leonardo Parasole
・ Leonardo Passos Alves
・ Leonardo Patrasso
・ Leonardo Patterson
・ Leonardo Patti


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Leonardo number : ウィキペディア英語版
Leonardo number
The Leonardo numbers are a sequence of numbers given by the recurrence:
:
L(n) =
\begin
1 & \mbox n = 0 \\
1 & \mbox n = 1 \\
L(n - 1) + L(n - 2) + 1 & \mbox n > 1 \\
\end

Edsger W. Dijkstra〔(EWD797 )〕 used them as an integral part of his smoothsort algorithm, and also analyzed them in some detail.〔(EWD796a )〕
Computing a second-order recurrence relation recursively and without memoization requires L(n) computations for the ''n''-th item of the series.
==Relation to Fibonacci numbers==
The Leonardo numbers are related to the Fibonacci numbers by the relation L(n) = 2 F(n+1) - 1, n \ge 0.
From this relation it is straightforward to derive a closed-form expression for the Leonardo numbers, analogous to Binet's formula for the Fibonacci numbers:
:L(n) = 2 \frac}- 1 = \frac \left(\varphi^ - \psi^\right) - 1 = 2F(n+1) - 1
where the golden ratio \varphi = \left(1 + \sqrt 5\right)/2 and \psi = \left(1 - \sqrt 5\right)/2 are the roots of the quadratic polynomial x^2 - x - 1 = 0.
The first few Leonardo numbers are
:1,\;1,\;3,\;5,\;9,\;15,\;25,\;41,\;67,\;109,\;177,\;287,\;465,\;753,\;1219,\;1973,\;3193,\;5167,\;8361, \ldots

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Leonardo number」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.